3D сканирование
и конструкторские услуги
+7 (812) 648-49-83
Работаем по всей России
3D сканирование и
конструкторские услуги
ru en

3D принтеры в космической отрасли

 

В своем рассказе «Необходимая вещь», написанном в 1955 году, Роберт Шексли описал конфигуратор, который двое космонавтов взяли с собой в межзвездную экспедицию для того, чтобы печатать на нем все, что им может понадобиться в космосе – от запчастей для корабля до яблочного штруделя на десерт. Прошло чуть более полувека, и реальность хоть и не переплюнула воображение писателя, но вплотную к нему приблизилась. НАСА ведет разработку 3д принтера для печати запчастей прямо на МКС. Действительно, развитие 3д принтеров в ближайшем будущем может существенно повлиять на космическую отрасль в целом и на перспективы развития отдельных конструкторских бюро в частности.

3д-принтер – это устройство, использующее метод послойного создания физического (твердотельного) объекта по цифровой 3д-модели. 3д-печать может осуществляться с использованием различных материалов: пластик, металл, стволовые клетки и даже пищевые компоненты. Технологий 3д-печати на сегодняшний день также очень много, и постоянно появляются новые. Существуют две основные технологии формирования слоёв: лазерная и струйная. Наиболее часто используемые – лазерная стерлитография и селективное лазерное спекание.

Рассмотрим существующие и потенциальные возможности использования 3д принтеров в космонавтике и космической промышленности.

3д принтеры в космосе

 

 

3д печать может найти применение в космосе в следующих перспективных направлениях:

1. 3д принтеры для создания запчастей и инструмента на борту корабля.

Американское космическое агентство NASA и компания Made in Space осенью 2014 года собираются отправить на МКС первый 3D принтер для производства различных деталей: запчастей, инструментов и научного оборудования.
Принтер будет изготавливать модели послойно из полимеров и иных материалов. 3д-модели для создания объектов помещены в память устройства либо будут передаваться с Земли в случае необходимости.

С новой технологией связывают грандиозные перспективы в оптимизации работы на орбите: от самого простого - трехмерной печати каких-то сломавшихся деталей, до самостоятельного создания роботов, навигационных систем, скафандров и исследовательского оборудования.

2. 3д принтеры для создания в космосе крупногабаритных конструкций.


NASA в рамках программы NIAC в 2013 году выделило компании Tethers Unlimited,Inc. (TUI) 500 тыс. долл. на дальнейшее развитие технологии автоматизированной сборки в космосе SpiderFab.

В основе технологии лежит трасселятор (Trusselator) – устройство, представляющее собой своеобразную помесь 3D-принтера и вязальной машины. Устройство в настоящее время успешно проходит испытания в лаборатории.

На одной стороне цилиндрического корпуса расположена катушка с нитью (в качестве сырья устройство использует пластик, например углеволокно), а на другом находится экструдер, через который выдавливаются три основные трубы будущей фермы или другой конструкции. Ферма усиливается путем обмотки нитью, в итоге робот длиной около метра может создать ферму длиной в десятки метров.

Робот-трасселятор с помощью манипулятора и специального сварочного аппарата сможет соединять исходные фермы в большие сложные конструкции и покрывать их солнечными панелями, светоотражающей пленкой и выполнять другие операции, в зависимости от целей миссии. Тип трасселятора может быть разным, например он может производить круглые или квадратные трубы различного диаметра и толщины.

 

Трасселятор может строить крупногабаритные конструкции, например километровые рамы для массива солнечных панелей.

Трасселятор размером с наноспутник может изготовить ферму длиной 10 и более метров.

Роботы SpiderFab оснащены экструдером, выдавливающим готовую пластиковую трубу барабанами-контейнерами большой ёмкости с сырьем, и манипуляторами для сборки конструкции

Технология позволяет изготавливать в космосе очень большие, длинной в несколько километров, каркасы космических кораблей, фермы антенн, базовые структуры солнечных электростанций, огромных телескопов и т.д.

В настоящее время конструкции, которые отправляются в космос, имеют огромный избыточный запас прочности для того, чтобы выдержать перегрузки при старте. Обычно в космосе такие сверхпрочные конструкции не нужны, зато нужен очень большой размер, например для телескопов-интерферометров. Аппараты SpiderFab позволят строить именно такие конструкции: легкие, крупногабаритные и с низкой стоимостью жизненного цикла.

Все необходимые части орбитального производственного комплекса SpiderFab можно вывести в космос с помощью существующих ракет-носителей. Фактически, даже при нынешних технологиях SpiderFab позволяет реализовать прорывные проекты, вроде строительства космических станций за орбитой Луны или солнечных электростанций мощностью в сотни мегаватт. При этом стоимость конструкций, произведенных с помощью SpiderFab, будет относительно небольшой. Одним из примеров использования SpiderFab может быть строительство космического радиотелескопа стоимостью $200 млн. с диаметром антенны более 100 м. О таком инструменте астрономам сегодня приходится только мечтать, но технология SpiderFab может сделать эту мечту реальностью уже в ближайшие десятилетия.

 

3. 3д-принтеры для строительства объектов на других планетах, например на Луне, в том числе из подручного материала.

В 2011 году NASA опубликовало свой проект строительства лунной базы с участием большого количества роботов (экскаваторы, бульдозеры, измельчители и т.д.).1
Сейчас Европейское космическое агентство предложило альтернативный проект 3д-печати лунной базы, используя в качестве строительного материала местный грунт.

 

Для печати используется принтер D-Shape от британской компании Monolite. На Луне принтер сможет использовать в качестве материала местный грунт, реголит. 

Реголит — рыхлый, разнозернистый обломочно-пылевой слой глубиной несколько метров, состоящий из обломков изверженных пород, минералов, стекла, метеоритов, и хорошо подходит для строительства.
На фотографии — полуторатонный строительный блок, сделанный принтером D-Shape в качестве демонстрации. Для печати использовался материал, на 99,8% аналогичный реголиту, полученный из базальтовых пород одного из вулканов в центральной Италии.

Печатающая головка 3D-принтера ходит по шестиметровой рамке. Робот печатает со скоростью 2 кубометра в час, окончательная версия будет печатать 3,5 кубометра в час. Строительство одного небольшого здания займёт около недели.

На картинке ниже можно рассмотреть в подробности макет проекта Европейского космического агентства. База состоит из четырёх жилых модулей, из них центральный и верхний левый модули уже закончены, а ещё два находятся в последней стадии строительства. Жилые модули соединены тоннелями, на каждом из них есть по четыре люка-иллюминатора. Примерный размер базы можно оценить в сравнении с астронавтом, который стоит рядом с центральным модулем.

Сейчас 3д принтеры пытаются применить в строительстве на Земле. Китайская компания WinSun сообщила о том, что ее новый 3D-принтер позволит создавать доступное и недорогое жилье в невероятно сжатые сроки - за 24 часа компания может отпечатать 10 домов площадью в 200 квадратных метров каждый. Себестоимость одного напечатанного здания около 5 тыс. долл.


4. Пищевые 3д принтеры

В 2013 году NASA объявило о финансировании разработки первого в мире 3D принтера, который будет создавать еду1. Такое устройство поможет космонавтам при длительных полетах в космос.

Новый принтер может готовить еду из ингредиентов, которые хранятся в порошковой форме в специальных картриджах. Смешав содержимое разных картриджей, добавив воду или масло, можно получить различные блюда.
3-D принтер распыляет ингредиенты слой за слоем, создавая твердую трехмерную пищу.

Первое, что получат с помощью 3D принтера, станет пицца. Сначала распечатают тесто, затем томатную основу, а после этого протеиновый слой. При этом источником протеинового слоя может стать все, что угодно, включая животных, молоко и растения. Альтернативными ингредиентами могут быть насекомые и водоросли.

Срок годности одного пищевого картриджа составляет около 30 лет, что достаточно, например, для полета на Марс.


5. Биопринтеры

Возможно, благодаря разработкам биологов уже в ближайшем будущем астронавтам не придется везти с собой в космос большие объемы биоматериалов: дерево, кости, шелк и даже донорские органы — все это можно будет напечатать из небольшого количества клеток на 3д-принтере.

Исследователи из Стенфордского Университета разрабатывают технологии 3д-печати, которые позволят астронавтам получать биоматериалы вроде зубной эмали или дерева прямо в космических лабораториях.2 В 2013 году НАСА выделило на эти исследования грант в 100 тыс. долл.

Технология предполагает внедрение кластеров клеток в специальный гель, который затем выдавливается из пьезоэлектрической печатающей головки, выстраивая матрицу для экстракции желаемого материала.

В данный момент ученые настраивают оборудование и создают базу данных для всех существующих в природе типов клеток. Никто не будет брать корову, овцу, шелкопряда или дерево на Марс. Однако качественная ткань или древесина может понадобиться. Поэтому вместо того, чтобы использовать целый организм, — в том числе и на Земле, можно напечатать ряд клеток, из которых затем произвести нужный продукт.

В последние годы разработки в области 3D-биопечати активно ведутся по всему миру. Биопринтеры искусственным способом создают живую ткань, накладывая живые клетки слой за слоем. В настоящее время все биопринтеры являются экспериментальными, тем не менее, в будущем они смогут произвести революцию в медицине.

Биопринтеры могут иметь разные конфигурации, но принцип работы один: они выводят клетки из печатающей головки, которая движется влево-вправо, вперед-назад, вверх- вниз, чтобы поместить клетки куда требуется. Таким образом, за несколько часов можно получить органический объект, который состоит из огромного количества очень тонких слоев.
В дополнение к выводу клеток, большинство биопринтеров также выводят растворимый гель для поддержки и защиты клеток во время печати.

В декабре 2010 года компания Organovo создала при помощи биопринтера первые кровеносные сосуды с использованием клеток, полученных от одного донора. Компания также успешно имплантировала нервы, созданные при помощи биопринтера, крысам, а эксперименты по пересадке созданных таким методом тканей человеку запланированы на 2015 год. Тем не менее, ожидается, что первое коммерческое применение биопринтеров будет заключаться в производстве простых человеческих структурных тканей для токсикологических испытаний. Это позволит ученым тестировать лекарства на моделях печени и других органах, созданных на биопринтере, тем самым снижая потребность в экспериментах на животных.

Со временем, как только испытания на человеке будут завершены, Organovo надеется, что биопринтеры будут использовать для получения трансплантатов кровеносных сосудов и применяться в операциях по шунтированию сердца. Намерения компании включают масштабную разработку технологий создания тканей и органов “на заказ”. Ожидается, что первым искусственно созданным человеческим органом станет почка, так как при трансплантации эти органы наиболее востребованы.

Научный прогресс со временем позволит получать в лабораториях органы с помощью биопринтеров из собственных клеток пациента, что может привести к революции в медицине. Будут разработаны методы, позволяющие распечатать новую ткань или орган непосредственно на теле. В следующем десятилетии врачи получат возможность просканировать раны и нанести слои клеток для их быстрого заживления.

В настоящее время команда исследователей биопечати под руководством Энтони Алата (Anthony Alata) в Wake Forrest School of Medicine разработала принтер, создающий кожу. В начальных экспериментах они взяли 3D-сканы тестовых травм, нанесенных мышам, и использовали эти данные для управления головкой биопринтера, которая распыляет клетки кожи, коагулянты и коллаген на рану. Результаты этого эксперимента оказались также весьма многообещающими: заживление ран проходило всего за две – три недели (примерно пять-шесть недель – в контрольной группе).

Частичное финансирование проекта создания кожи с помощью биопринтера осуществляется американскими военными, которые добиваются развития биопечати in situ, чтобы лечить раны прямо в боевых условиях. В настоящее время работа все еще находится в фазе доклинических испытаний. Алата развивает технологии, экспериментируя на свиньях. Тем не менее, испытания на людях, пострадавших от ожогов, могут быть осуществлены в течение ближайших пяти лет.

Подобные биопринтеры на борту космического корабля помогут увеличить срок пребывания космонавтов в космосе и решить ряд медицинских проблем.


3д принтеры в космической промышленности

Не только в космосе, но и на земле 3д принтеры способны повысить эффективность работы космической отрасли.
Центр космических полётов им. Годдарда (США) во время испытаний звуковой ракеты уже отправил в полёт отсек аккумуляторной батареи, напечатанный на 3D-принтере, а Центр космических полётов им. Маршалла оснастил двигатели для ракет RS-25 и J-2X напечатанными на 3D-принтере компонентами.

В целом 3д-принтеры применяются в производстве:
- для быстрого изготовления прототипов моделей и объектов для дальнейшей доводки или эксперимента; 
- для быстрого производства — изготовление деталей из материалов, поддерживаемых 3D-принтерами, в том числе из металла. Это позволяет наладить производство сложных, массивных, прочных и недорогих систем. Пример - беспилотный самолёт компании Lockheed, большая часть деталей которого была изготовлена методом скоростной трёхмерной печати.
для изготовления выжигаемых моделей и форм для литейного производства.

3д-принтеры уже позволяют экономить на стоимости и времени производства. Скоро эта экономия станет весьма ощутимой.

 

Денис Сесицкий, ведущий инженер ФГУП «КБ «Арсенал»

Доклад на конференции «Инновационный арсенал молодежи» 2014